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Abstract

It is shown that the speed of an adiabatic shear band may be estimated from its physical and constitutive properties

within a constant, which must be obtained from the complete boundary value problem.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction and background

A subject of considerable interest in the recent literature has been the behavior and characteristics of an

adiabatic shear band. Much progress has been made, but one particularly elusive feature has been the speed

of propagation of the band. Even the feature whose speed is to be tracked has not been agreed upon

completely.

In their study of a shear band, considered as a boundary layer, Gioia and Ortiz (1996) chose to track the
forward tip of a contour of constant plastic work as a marker for determining the speed of propagation.

Each contour has the form of a long, narrow plume that is widest near the forward tip and narrows sig-

nificantly at its rear end, which in their study is anchored at the fixed origin of laboratory coordinates. As a

simple model they assume that when the plastic work reaches a critical level there is a transition from a

stabilizing high value of the work hardening exponent to an unstable low value. Because many materials do

seem to experience a saturation of work hardening, this may be a suitable description for some cases. In

calculations for the case of impact on the edge of a precracked plate (the Kalthoff problem, see a review by

Kalthoff, 2000) they plot the tip speed, U , normalized by the speed of the impactor, V , as a function of the
Reynolds number, R ¼ qV 2=S, and the non-dimensional critical work, W ¼ wc=r0c0. Thus, U=V ¼
f ðR;WÞ, where S is a characteristic flow stress, wc is the critical level of plastic work, and the product r0c0

represents a characteristic level of plastic work. At constant W the function f ð�Þ rises rapidly for small

Reynolds numbers, but becomes nearly constant for values larger than 10 or 12, so that U is approximately
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proportional to V for large Reynolds numbers. The whole curve appears to decrease uniformly for in-

creasing values of critical work. In general, however, there seems to be no way to select the critical level of

plastic work a priori, so wc remains a free parameter. Furthermore, this characterization of the speed of a

shear band is tied specifically to the Kalthoff problem and does not appear to be easily generalized to a
more complex flow field.

Gioia and Ortiz (1996) also developed solutions for a fully developed shear band, but they did not show

how it connects to the forward facing plumes of plastic work or higher temperature.

Another description of a propagating shear band was given by Wright and Walter (1996) for a mode III

deformation in a perfectly plastic material. They assumed that the near field around the tip of a fully lo-

calized shear band would appear to be steady, as viewed from a coordinate system that translates at a

constant speed with the tip. Furthermore, they assumed that all fields would have a similarity form, raf ð/Þ,
where r is the radius from the moving tip of the band, a is an unknown exponent, and f is an unknown
function of the polar angle, /, measured from directly ahead of the band (different alphas and functions for

different fields). These assumptions (translation at a constant speed, steady fields as seen from the tip of

the band, and a similarity form for the solution) result in a definite set of exponents and a coupled set of

ordinary differential equations for the unknown characteristic functions. The radial exponents for particle

velocity, stress, and the temperature factor are all small positive numbers so that although there is no

singular behavior at the tip, there is rapid variation in the radial coordinate. Furthermore, solution of the

equations by standard methods revealed that the particle velocity, which is odd in /, increases rapidly from

zero directly ahead of the band, but then makes a transition to nearly constant values that are discon-
tinuous across the shear band where / ! �p. Finally, both the flow stress and the temperature show

wedges of higher values that open forward from the tip. In addition, the flow stress and the driving traction

on the shear band, s23, are continuous to the rear across the fully developed shear band, but s23 has a

substantially lower value there than it has in the forward ridge. Wright and Walter (1996) also showed that,

at least for some simple constitutive models, knowledge of the continuous shear stress and the jump in

particle velocity across a fully developed shear band is sufficient information to deduce the complete

structure of the band. Thus a transition region between a forward facing wedge and the fully localized shear

band to its rear was fully described.
In the original paper, the solution was given in terms of two unknown parameters, namely the speed of

the shear band, U , and the initial condition for the temperature function, denoted G0.

Chen and Batra (1999) using the same approach as Wright and Walter (1996), developed the structure

around the tip of a shear band in mode II motion. They found the same exponents for the radial depen-

dence as in mode III, but the angular dependence was much more complicated because in mode II there are

two components of velocity, rather than only one, as in mode III. In all other qualitative aspects the two

cases are very similar.

At this point it needs to be emphasized that in order to determine the speed of a shear band Gioia and
Ortiz (1996) focused their attention on a feature in the forward part of the leading plume of higher flow

stress, plastic work, and temperature. In contrast Wright and Walter (1996) and Chen and Batra (1999)

focused their attention on the rear of the plume where the transition to a fully developed and fully localized

shear band occurs. In the former case, the speed of the shear band was given as a function of two pa-

rameters (free field Reynolds number and critical level of plastic work). In the latter cases two parameters

were also required, but the speed of the shear band was itself one of those parameters. The other parameter

was an initial condition for the similarity ODEs.

Two recent papers, one experimental and the other computational, have shed further light on the
question of the speed of a shear band. Guduru et al. (2001) used high-speed optical and infrared obser-

vations in a series of Kalthoff experiments on plates made of C300 maraging steel. In this application the

optical technique of coherent gradient sensing (CGS) was sensitive to the surface displacement gradient,

ou3=ox2, in a direction perpendicular to the advancing shear band. The displacement normal to the surface
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of the plate is u3, and the surface coordinate perpendicular to the shear band is x2. Because the impact side

of the shear band is in compression parallel to the band and the other side is in relative tension, there is a

correspondingly sharp thickening or thinning of the plate on the two sides. As a consequence the CGS

technique shows the fully formed shear band with remarkable clarity and permits high-speed observation of
the advancing tip at the end of the fully localized region. However, a further consequence is that the

material in the shear band actually experiences a mixed mode motion, rather than just mode II, because of

the finite thickness of the plate. The somewhat diffuse nature of the tip itself, which is visible in the CGS

images and is probably a consequence of the power law behavior in the radial coordinate from the tip,

appears to introduce some uncertainty in the precise determination of its position. Nevertheless, the authors

have reported five shear band trajectories for five different speeds of the impactor. These trajectories show a

certain amount of variation in velocity, including nearly stopping, which may correspond to the arrival of

elastic release waves from various boundaries in either the target plate or the impactor. No shear band ever
really attains a constant speed, although one seems to come close for part of its trajectory in the results

from the fastest impactor striking at 39 m/s. The steady representation should still hold if the velocity is

only ‘‘slowly varying’’. The experimental results of Guduru et al. (2001) may lend some support to this

point of view. Although the measured speeds of the shear band in the five cases shown are rather variable,

the infrared measurements, which were made by an eight by eight array of detectors over a field of view that

was 1.1 mm square and placed in the path of the shear band, show the thermal plume extending ahead of

the fully developed shear band in qualitative agreement with the computational predictions of Gioia and

Ortiz (1996) and also of Needleman and Tvergaard (1995).
Bonnet-LeBouvier et al. (2002) have made a direct computational attack on the problem of the speed of

an adiabatic shear band. They consider a strip of material 2.5 mm wide by 200 mm long subjected to equal

and opposite driving velocities, �V , along the long boundaries and periodic boundary conditions on the

short boundaries. A defect at one end ensures the formation of a shear band in mode II motion, which may

be tracked as it develops. The full balance laws for momentum and energy, including heat conduction, are

used. Therefore, the structure of the band and its development are determined by the physics of the

problem, not by the mesh used in the calculation. The mesh was carefully graded from very fine to coarse

proceeding from the central planes toward the boundary. The authors use linear elasticity and a constitutive
law for the plastic flow stress of the form

re ¼ Kðe þ e0ÞnT�mðDþ D0Þm; ð1Þ

where re ¼ 3
2
S : S

� �1=2
is the flow stress in an equivalent tension test, e is the equivalent plastic tensile strain,

T is the temperature, and D ¼ 2
3
d : d

� �1=2
is the plastic strain rate. The other six parameters, K, e0, n, m, D0,

and m, are constants.
The authors begin their study by identifying a set of non-dimensional physical parameters. Then by

extensive parametric calculation, varying one parameter at a time, they deduce the dependence of the ratio

U=V as a power law function of the various parameters.

The feature that they select to characterize the speed of a shear band in their calculations is the transition

between the fully developed band and the forward facing plume. They find that the steady speed of a shear

band in their problem may be characterized by three stages if the speed is greater than a small critical speed,

below which no shear band forms. In stage I, disregarding the small critical speed, they find that the speed

of the band is proportional to the driving velocity at the boundary,

U
V

¼ a
Kb

qcT0m
ð�Anþ BÞ; ð2Þ

where T0 is the initial temperature, and b is the Taylor–Quinney factor, usually taken to lie between about
0.85 and 1.0, which expresses the fraction of plastic work converted to heat. They find that stage II, which is
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a transition region between stages I and III, cannot be easily characterized. In stage III they find that the

speed of the shear band becomes independent of the applied velocity

U ¼ g
K
q

ffiffiffiffiffiffiffiffiffiffi
b

cT0m

s
ð�A0nþ B0Þ: ð3Þ

The coefficient g depends upon the temperature exponent, m. In the concluding discussion they remark that

‘‘. . . it is most probable that the shear band speed is controlled by the intensity of thermal softening

ore=oT . . .’’ in the region directly ahead of the band.

2. Perfectly plastic materials

For a perfectly plastic material both the stage I and stage III speeds may be deduced theoretically from

the steady similarity solutions of Wright and Walter (1996) for antiplane motion or Chen and Batra (1999)

for in-plane motion. For example, Eqs. (17) from Wright and Walter (1996) are:

w ¼ U
2m

1 þ m
qc
aj0

� �1=ð1þmÞ r
Ub

� �m=ð1þmÞ
W ;

_cc ¼ 1

b
2m

1 þ m
qc
aj0

� �1=ð1þmÞ r
Ub

� ��1=ð1þmÞ
C;

g ¼ qU 2

j0

2m
1 þ m

qc
aj0

� �ð1�mÞ=ð1þmÞ r
Ub

� �2m=ð1þmÞ
G;

s ¼ qU 2 2m
1 þ m

qc
aj0

� �1=ð1þmÞ r
Ub

� �m=ð1þmÞ
S:

ð4Þ

In this case the flow stress and strain rate correspond to an equivalent shear test. Thus, s ¼ 1
2
S : S

� �1=2
and

D ¼ ð2d : dÞ1=2
. The flow law now is s ¼ j0gðhÞð1 þ bjrwjÞm where the softening function is g ¼ 1 � ah. In

all applications bjrwj � 1, so that ð1 þ bjrwjÞm 
 ðbjrwjÞm. As stated in Section 1, U is the speed of the

shear band. The non-dimensional functions W , C, G, S depend only on the polar angle /, measured from

the direction of propagation, and satisfy a coupled set of ordinary differential equations in which the strain

rate sensitivity, m, is the only parameter. W is odd, and S, G, and C are even in /. The out of plane velocity

is w, the flow stress is s and S ¼ GCm. With the scaling shown in (4), to obtain any solution at all it is

necessary that Cð0Þ ¼ 1, Wright and Walter (1996). As a consequence, the other two initial values that fix
the initial stress and temperature are equal, Sð0Þ ¼ Gð0Þ ¼ S0 ¼ Oð1Þ. The similarity solution is perhaps

best understood as the leading term in a local series solution, e.g., w ¼ ra½w0ð/Þ þ rw1ð/Þ þ 1
2
r2w2ð/Þ þ � � ��

for the velocity, which must be matched to an exterior solution in which the local solution is embedded.

Close to the tip of the shear band the leading term will dominate.

Because of the self-similar form we can write sð0; rÞ=Sð0Þ ¼ sðp � e; rÞ=Sðp � eÞ, where e is a small

number, or in obvious notation;

sþ=S0 ¼ s�=S�: ð5Þ

After eliminating the radial dependence from the last two equations of (4), using the initial conditions, and

inverting for U , we have

U ¼ sþ

q

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ m

2m

r ffiffiffiffiffiffiffiffi
a

gþc

r
1ffiffiffiffiffi
S0

p : ð6Þ
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Now note that for the assumed constitutive function, we have a=gþ ¼ �ðsh=sÞþ, so that the expression for

the speed of a shear band may be written

U ¼
ffiffiffiffiffi
sþ

q

s ffiffiffiffiffiffiffiffiffi
�sþh
qc

s ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ m

2m

r
1ffiffiffiffiffi
S0

p : ð7Þ

Formula (7) depends only on the conditions directly ahead of the shear band, and the distance r is im-

material so long as it is close to the band where the smallest power of r will dominate the solution. The first

factor in Eq. (7) has the dimensions of speed, and the others are non-dimensional. Because qcdh ¼ dWp for

adiabatic heating, we can regard qc as the amount of plastic work per unit volume to raise the temperature
one unit, and therefore, the ratio �sh=qc is the dimensionless rate of adiabatic softening per unit plastic

work. If the Taylor–Quinney factor were to be used, the expression would read �bsh=qc, but for theoretical

reasons b ¼ 1 in a non-work hardening material, see Wright (2002).

Although (7) was derived from a particular flow law, one may speculate that it holds for any non-work

hardening material, especially since the conditions ahead of the band are not extreme so that the linear

thermal softening and the power law rate hardening will be reasonable approximations.

Furthermore, from the first and last of (4), after eliminating the dependence on r, we have w=s ¼ W =qUS
and since S is even and W is odd in /, we have a formula for the jump of the velocity across the shear band.

½w�� ¼ 2
W �

qU
sþ

S0

¼ U
4m

1 þ m
qc
�sþh

W � ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2m

1 þ m

r ffiffiffiffiffiffiffiffiffi
sþc
�sþh

s
W �ffiffiffiffiffi
S0

p : ð8Þ

Finally, after dividing Eq. (7) by Eq. (8), we have

U
½w��=2

¼ 1

W �
1 þ m

2m
�sþh
qc

: ð9Þ

Eqs. (5), (7)–(9) are the principal results. Plots of the non-dimensional velocity, W ðp�;mÞ, and driving shear

stress, S23ðp�;mÞ, on the fully formed band are shown in Figs. 1 and 2 as a function of the strain rate

sensitivity. Data were taken from the computations shown in Wright and Walter (1996) for the case

S0 ¼ G0 ¼ 1.

Fig. 1. Plot of the characteristic function for velocity in mode III motion near the shear band as a function of strain rate sensitivity.

Data points taken from Wright and Walter (1996).
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In the paper by Chen and Batra (1999) the analysis is similar in spirit, but more complicated in detail
because there are two components of velocity. They chose a slightly different scaling for the non-dimen-

sional functions.

_cc ¼ qcU
aj0bm

� �1=ð1þmÞ

r�1=ð1þmÞ~ii;

g ¼ a
c

qcU
aj0bm

� �2=ð1þmÞ

r2m=ð1þmÞ~gg;

s ¼ qU
qcU
aj0bm

� �1=ð1þmÞ

rm=ð1þmÞ~ss:

ð10Þ

Comparing (4) and (10) shows the following correspondences:

2m
1 þ m

� �1=ð1þmÞ

Cð0Þ () ~iið0Þ;

2m
1 þ m

� �ð1�mÞ=ð1þmÞ

Gð0Þ () ~ggð0Þ;

2m
1 þ m

� �1=ð1þmÞ

Sð0Þ () ~ssð0Þ:

ð11Þ

For either scaling the constitutive law takes the same form, i.e., S ¼ GCm or ~ss ¼ ~gg~iim. The advantage of the

scaling in (4) is that Cð0Þ ¼ 1 in all cases, so that Gð0Þ ¼ Sð0Þ ¼ S0. The relations among ~ssð0Þ, ~ggð0Þ, and ~iið0Þ
are not as simple, as seen from (11). The same manipulations that previously lead to (7) now lead to

U ¼
ffiffiffiffiffi
sþ

q

s ffiffiffiffiffiffiffiffiffi
�sþh
qc

s ffiffiffiffiffiffi
~ggþ

p

~ssþ
ð12Þ

with Chen and Batra�s equations. Now from (11)
ffiffiffiffiffiffi
~ggþ

p
=~ssþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ mÞ=2m

p
S�1=2

0 when the constitutive

equations are scaled in the mode III form. Thus, the speed in either mode II or mode III is given by Eq. (7).

Fig. 2. Plot of the characteristic function for the driving shear stress in mode III motion near the shear band as a function of strain rate

sensitivity. Data points taken from Wright and Walter (1996).
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Furthermore, it may be checked from the equations in Chen and Batra (1999) that an equation entirely

equivalent to (9) also holds for mode II motion.

3. Discussion

The speed of a shear band, according to Eq. (7), depends on the state of the material directly ahead of the

tip of the fully localized band. The first term is a plastic wave speed, which is determined by the square root

of the specific flow stress. This fundamental speed is modified by the square root of the rate of softening per

unit plastic work. Stronger softening accelerates the band and weaker softening retards it. This observation

tends to confirm the speculative remark of Bonnet-LeBouvier et al. (2002) quoted at the end of the first

section. The speed is further modified by the inverse square root of the strain rate sensitivity so that

stronger sensitivity retards the band and weaker sensitivity accelerates it. As always happens in shear band
problems, the non-dimensional softening and the strain rate sensitivity do not appear individually, but as a

ratio. Finally, note that the speed is not fully determined by material properties, but also requires the

specification of the constant S0, which plays the role of an initial value in determining the similarity so-

lution. It would appear that the constant cannot be determined without reference to the complete boundary

value problem of which the similarity solution is only one part. Further research is required to determine

exactly how the constant is to be determined in any particular problem.

The author had previously conjectured that if the constitutive law for plastic flow were calibrated to the

material directly in front of the band, then the undetermined constant must be 1.0, Wright (2002), but upon
closer examination this does not appear to be the case. All attempts to establish such a procedure using only

the similarity forms in Eq. (4) have resulted only in confirming the apparent arbitrariness of the constant

without further information.

Eqs. (7) and (9) may be applied to the flow law in (1) with n ¼ 0 and compared to the results of Bonnet-

LeBouvier et al. (2002) in Eqs. (3) and (2) respectively. Because the relation between the flow stresses for

tension and shear is re ¼
ffiffiffi
3

p
s, and because �sh ¼ ms=T in this case, the results are

U ¼ rþ
effiffiffi
3

p
q

ffiffiffiffiffiffiffiffi
m

cTþ

r ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ m

2m

r
1ffiffiffiffiffi
S0

p and
U

½w��=2
¼ 1

W �
1 þ m

2m
mrþ

effiffiffi
3

p
qcTþ

: ð13Þ

As before, the superscript plus sign indicates that the quantity is to be evaluated directly ahead of the

propagating tip of the shear band. For the narrow strip studied by Bonnet-LeBouvier et al. (2002) the

driving velocity at the upper and lower boundaries, V , may be interpreted as ½w��=2 until inertial effects

start to become important in establishing the fields behind the point of localization. All the main features of

Eqs. (3) and (2) are also captured by the two theoretical formulas given in Eq. (13) except for the de-

pendence on work hardening.

Setting S0 ¼ 1 in Eq. (7) delivers a formula for the basic characteristic scale of the speed of a shear band.
Although it will not deliver precise answers for particular boundary value problems, evaluation of the

resulting formula for different materials will allow comparative predictions of the characteristic speeds of

shear bands in those materials. However, such a comparison is strongly dependent on the constitutive

model used for the flow stress. In turn this requires an abundance of high quality data, which is not always

available. The weakest links tend to be the rate of thermal softening under high rate heating and the smaller

values of strain rate sensitivity (m < 0:01, say). Rapid heating is important so that slower metallurgical

changes, which are unimportant for adiabatic shear bands, will tend to be suppressed. Eqs. (7) and (9) are

obviously extremely sensitive to small values of strain rate sensitivity, m, which are also the most difficult to
establish experimentally with accuracy.
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For example, Table 1 compares two aluminum alloys, three steels, a tungsten metal matrix composite,

and a uranium alloy. The Johnson–Cook model of viscoplasticity has been used (Johnson and Cook, 1983)

to estimate the flow stress, and all data have been taken from the same paper. Linear softening from room

temperature (293 K) to the melting point has been assumed in every case in the absence of more robust

data. The flow stress was calculated by arbitrarily assuming an equivalent plastic shear strain of 0.10 and an

equivalent shearing strain rate of about 5200 s�1. Since the formulas given in the paper are for equivalent

tensile stress and strain, the assumed shear values must be converted to the appropriate tensile values and

then the resulting tensile stress must be converted back to an equivalent shear value for use in Eq. (7). The
strain rate sensitivity, m, is taken to be the constant C in their viscoplasticity model. This is a good ap-

proximation for small sensitivities, m � 1. The data and speeds given in the table cannot be regarded as

precise, for reasons stated previously, but the table does illustrate how various physical properties can be

expected to affect the speed of an adiabatic shear band.

The first column in the table lists the material and a nominal hardness on one of the Rockwell scales. The

next four columns and the eighth column are adapted from Johnson and Cook (1983), as described above.

The characteristic speed determined from the specific flow stress is given in the sixth column. The thermal

sensitivity is estimated in the seventh column by taking �sþh ¼ sþ=ðTmelt � TroomÞ. The column labeled
susceptibility is the ratio of the thermal and strain rate sensitivities. For a given non-dimensionalized defect

the material with the greatest susceptibility may be expected to fail at the lowest shear strain in a torsional

Kolsky bar test, Wright (1990). Finally the last column is the characteristic speed of an adiabatic shear

band, as estimated by Eq. (7) and the available data.

The two aluminums have high characteristic speeds because even though the flow stresses are not

high, the density is low. The low melting temperatures offset the large specific heats and low flow stresses

to produce moderate values of thermal sensitivity. Strain rate sensitivities are on the low side, so the

net result is that the estimated speed of a shear band in the aluminum alloys is fairly high. The three
steels illustrate the effects of increasing strength and decreasing strain rate sensitivity on susceptibility

and shear band speed. Finally note that the two high density materials, which show moderately low

characteristic speeds, as expected, both show large thermal sensitivities because of low specific heats

and high strengths. However, only the uranium alloy shows a high speed for shear bands. This is a

consequence of an extremely high susceptibility, which follows from the exceptionally low strain rate

sensitivity.

The main point to be drawn from this discussion is that the speed of an adiabatic shear band depends on

many physical factors, including strength, density, specific heat, melting temperature (or more accurately,

Table 1

Properties and characteristic speeds of an adiabatic shear band in various materials

Material Flow

stress

(MPa)

Density

(kg/m3)

Specific

heat

(J/kg K)

Melting

tempera-

ture (K)

ffiffiffiffiffiffiffi
s=q

p
(m/s)

Thermal

sensitivity

(�sh=qc)

Strain rate

sensitivity

(m)

Suscepti-

bility

(�sh=mqc)

ASB

speed

(m/s)

2024-T351

Aluminum, B-75

280 2770 875 775 320 0.24 0.015 16 910

7039 Aluminum,

B-76

280 2770 875 877 320 0.20 0.01 20 1000

1006 Steel, F-94 300 7890 452 1811 195 0.055 0.022 2.5 220

4340 Steel, C-30 660 7830 477 1793 290 0.12 0.014 9 600

S7 Tool steel, C-50 1150 7750 477 1763 385 0.21 0.012 18 1150

W–7Ni–3Fe, C-47 1060 17000 134 1723 250 0.33 0.016 21 800

U–3/4Ti, C-45 990 18600 117 1473 230 0.38 0.007 54 1210

Data adapted from Johnson and Cook (1983).
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rate of thermal softening), and strain rate sensitivity. As a final comment, note that Eq. (7) depends on the

state of the material immediately ahead of the fully developed shear band, but to locate that point in any

boundary value problem would still require accurate knowledge of incipient localization.
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